# Camera Obscura

## Σύντομη Περιγραφή

Students will learn how to build a simple camera obscura, explore the inversion of images, and explore the fact that smaller pinholes lead to clearer images.

Before going through the activity, read the story attached: 5.3 The physicist Ibn Al-Haytham develops a theory of light

## Στόχοι

By building and experimenting with a simple camera obscura, the students are going to explore the main characteristics of a pinhole camera.They will learn that sharper images can be produced with smaller pinholes, however on the expense of the brightness In addition, they will experience that the image is upside down. If the students produce cameras of different length, they will realise that the distance between the pinhole and the screen determines the size of the image.

## Μαθησιακοί Στόχοι

After the activity, the students will be able to:

• describe the influence of the size of the pinhole on the image quality (brightness, sharpness).
• describe that the bigger the distance between the pinhole and the screen, the larger the image (if cameras of different size are available).

## Αξιολόγηση

• During the activity, the students experiment with different pinhole sizes. When working in groups, they can discuss the different observations they make. Afterwards, the working groups can exchange their results and list them on a blackboard or a whiteboard.
• The teacher may pick the shortest and the longest camera that was built (if applicable). The students observe the same object at identical distances. They describe the observation made with the two cameras.

## Υλικό

• Empty cereal box or a shoe box
• Empty cardboard tube
• Tracing paper
• Scissors
• Bread knife or small hacksaw
• A pin or a needle

## Θεωρητικές πληροφορίες

The earliest form of 'photography' and use of a pinhole was the camera obscura ('dark chamber'). It’s a simple camera without a lense and with a single very tiny aperture called pinhole. Light from objects travels in a straight line through the pinhole, in such a way that the light from the top of the object passes through the pinhole, continuing in a straight line under an angle, and ends up at the bottom of the image. By employing a camera obscura Ibn al-Haytham explained the nature of light and vision and laid down the principles of cameras. From 1500 CE onwards lenses replaced the pinhole, but still resulted in inverted images.

Note that such a camera obscura is a safe tool for observing solar eclipses in projection.

Fig. 38 Camera Obscura (Credits: aehistory.wordpress.com)

## Πλήρης Περιγραφή της Δραστηριότητας

A simple camera obscura

Instructions

1. Cut out a large aperture on the box and tape the screen (tracing paper) over the gap.
2. Use a pin to make a pinhole on the side opposite to the screen.
3. Hold the camera close to a light source to view the image of a bulb. You will see an inverted light bulb!
4. Experiment with different sizes of pinholes and observe the quality of the inverted image.

Fig. 39 Building a camera obscura (Credits: Justin Quinnell)

Another version of camera obscura: Tube Obscura

Materials:

• Empty cardboard tube
• Tape
• Tracing paper

Fig. 40 A cylindrical camera obscura image (Credits: Justin Quinnell)

Instructions:

Cut the end of a cardboard tube (using a bread knife or small hacksaw) then tape some tracing paper tightly over the cut end of the tube. Reassemble the tube with the tracing paper inside (see figure 40). Use the same tube to trace a circle on a thin sheet of aluminium. (A flattened out drink can works well although thin black card will also work). Make a pinhole (the size of a drawing pin) in the centre of this circle. Cut the circle out with the hole in the centre and tape over the end of the tube. Look through with one eye whilst blocking the excess light with your hands.

## Πρόγραμμα σπουδών

### Space Awareness curricula topics (EU and South Africa)

The journey of ideas, Constellations, stars

## Συμπεράσματα

This activity deals with the concept of a camera obscura, a pinhole camera. After building their own camera, the students experiment with it to explore its characteristics as an optical tool. They will investigate properties of the image produced, like sharpness, brightness, and size. When studying the background information, they will learn that this concept is quite old and was transferred from the East to Europe.

Μεταφόρτωση
Θέμα αναλυτικού προγράμματος
Constellations, stars
Μεγάλη Επιστημονική Ιδέα
Λέξεις-κλειδιά
Islamic Heritage
Ηλικίες
6 - 14
Εκπαιδευτική βαθμίδα
Primary, Middle School
Χρόνος
1h30
Μέγεθος ομάδας
Group
Επιβλεπόμενο για λόγους ασφάλειας
Yes
Κόστος
Medium Cost
Μέρος
Small Indoor Setting (e.g. classroom)
Βασικές Δεξιότητες
Asking questions, Developing and using models, Analysing and interpreting data
Τύπος μαθησιακής δραστηριότητας